工作经历

Oct/2015 - present:  Principle Investigator, South China Agricultural University, College of Life Sciences. 

 

Jan/2014 - Sep/2015:  Assistant Scientist, Department of Genetics, University of Wisconsin, Madison, USA

  

Jan/2009 - Dec/2013:  Research Associate, Department of Genetics, University of Wisconsin, Madison, USA

学习经历
学位学历学科门类专业毕业学校类型入学时间毕业时间
博士博士研究生
理学
生物化学
美国纽约城市大学研究生院和大学中心
全日制 2001-092008-02
硕士硕士研究生
理学
遗传学
中山大学
全日制 1998-092001-07
学士大学本科
理学
微生物学
中山大学
全日制 1994-091998-07
RESEARCH INTERESTS
Autophagy (“self-eating”) is a highly conserved degradation process in eukaryotes whereby organelles and cytoplasm are sequestered in vesicles, which are subsequently delivered to the vacuole for breakdown. Autophagy-mediated turnover plays an essential role in cellular housekeeping and is critical for plant defense and robust nutrient recycling. We are interested in elucidating the role of plant Atg (Autophagy-related) genes to understand its contribution to plant biology, which may offer us new strategies to improve the agronomic performances and yields of crops by altering this process
PUBLICATIONS

1.    Li, F., T. Chung, J.G. Pennington, M. L. Federico, H.F. Kaeppler, S.M. Kaeppler, M.S. Otegui, and R.D. Vierstra (2015) Autophagic recycling plays a central role in maize nitrogen remobilization. Plant Cell 27:1389-408

2.    Marshall, R.S., F. Li, D.C. Gemperline, A.J. Book, and R.D. Vierstra (2015) Autophagic degradation of the 26S proteasome is mediated by the dual ATG8/ubiquitin receptor RPN10. Mol. Cell  58:1053 – 1066

3.    Spitzer, C, F. Li, R.A. Buono, H. Roschzttardtz, T. Chung , M. Zhang, K.W. Osteryoung, R.D. Vierstra, and M.S. Otegui (2015) The endosomal protein CHARGED MULTI-VESICULAR BODY PROTEIN1 regulates the autophagic turnover of plastids in Arabidopsis. Plant Cell  27:391-402

4.    Li F., and R.D. Vierstra (2014) Arabidopsis ATG11, a scaffold that links the ATG1-ATG13 kinase complex to general autophagy and selective mitophagy. Autophagy 10:1466-1467.

5.    Li, F., T. Chung, and R.D. Vierstra (2014) Autophagy-related (ATG) 11 plays a critical role in general autophagy and senescence-induced mitophagy in Arabidopsis. Plant Cell  26:788-807.

6.    Li, F., and R.D. Vierstra (2012) Autophagy, a multifaceted intracellular system for bulk and selective recycling. Trends in Plant Sci. 17: 526-537. (Featured review)

7.    Li F., and R.D. Vierstra (2012) Regulator and substrate: Dual roles for the ATG1-ATG13 kinase complex during autophagic recycling in Arabidopsis. Autophagy 8: 982-984.

8.    Klionsky, D.J., and multiple authors including F. Li (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8: 445-544.

9.    Suttangkakul A., F. Li*, T. Chung, and R.D. Vierstra (2011) The ATG1/ATG13 protein kinase complex is both a regulator and a target of autophagic recycling in Arabidopsis. Plant Cell 23: 3761-3779.  (* Co-first author)

10.  Chen Y., F. Li*, and E.T. Wurtzel (2010) Isolation and characterization of the Z-ISO gene encoding a missing component of carotenoid biosynthesis in plants. Plant Physiol 153: 66-79. (* Co-first author)

11.  Li, F., O. Tzfadia, and E.T. Wurtzel (2009) The phytoene synthase gene family in the Grasses: subfunctionalization provides tissue-specific control of carotenogenesis. Plant Signaling and Behavior 4(3): 208-211.

12.  Li F., R. Vallabhaneni, J. Yu, T. Rocheford, and E.T. Wurtzel (2008) The maize phytoene synthase gene family: overlapping roles for carotenogenesis in endosperm, photo-morphogenesis, and thermal stress-tolerance. Plant Physiol 147: 1334-1346.

13.  Li F., R. Vallabhaneni, and E.T. Wurtzel (2008) PSY3, a new member of the phytoene synthase gene family conserved in the Poaceae and regulator of abiotic stress-induced root carotenogenesis. Plant Physiol 146: 1333-1345.

14.  Li F., C. Murillo, and E.T. Wurtzel (2007) Maize Y9 encodes a product essential for 15-cis-zetacarotene isomerization. Plant Physiol 144: 1181-1189.

15.  Gallagher C.E., P.D. Matthews, F. Li, and E.T. Wurtzel (2004) Gene duplication in the carotenoid biosynthetic pathway preceded evolution of the grasses. Plant Physiol 135: 1776-1783.