彭新湘

发布者:生命科学学院发布时间:2018-08-09浏览次数:2017

       博士生导师 研究员  

      所属单位:生物化学系

 

       办公室:生科院北-511


       Email:xpeng@scau.edu.cn

 



个人简介

1989年于华南农业大学博士研究生毕业并留校工作,曾任生命科学学院院长,现任华南农业大学发展规划处处长。


工作经历

        1983.08-1987.03:湖南师范大学生物系助教

        1989.12-至今:华南农业大学生命科学学院,分别于199019931997年晋升为助研、副研、研究员。

        国外研究经历: 

        1991.09-1993.12:国际水稻研究所博士后

        1995.09-1996.09:国际水稻研究所博士后

        2001.11-2002.02:美国旧金山州立大学高访

        2007.08-2008.02:美国康奈尔大学高访


主要研究领域

        1.植物高光效机理及其利用:采用多基因转化技术分流光呼吸乙醇酸代谢,构建C3植物光合CO2浓缩机制,旨在提高作物光合效率、产量及其抗逆性。

        2.植物活性氧信号发生与抗逆性:植物体内H2O2总量的70%来源于光呼吸代谢,当植物处于干旱、高温等逆境时这一比例会更高。我们的研究表明,光呼吸关键酶GLOCAT的互作/解离可作为产生H2O2波的调控开关,是一种新的H2O2信号发生机制。将致力于深入解析这种新开关机制的调控分子机理及其生物学功能

        3.植物草酸代谢调控机理:草酸在植物抗重金属毒害、耐低磷、提高N素利用效率等过程中起重要作用,但过量存在于食品中却对人体有害,因此阐明植物草酸代谢及其调控机理是合理有效利用草酸功能的关键。本课题组在该领域已有三十多年的研究积累,目前正致力于草酸合成的亚细胞定位及其代谢关键基因克隆与功能分析。

        上述研究旨在最终获得高光效及高抗(如抗旱,抗高温高光、抗重金属)作物新材料,为作物分子改良育种提供指导。


近五年主持的科研课题

      1.国家基金“光呼吸GLOCAT互作/解离调控机理及其与植物抗逆性的关系研究”

      2.广州市科技计划重点项目“植物光呼吸调控机理及其与抗逆性的关系研究”

      3.国家基金“水稻光合CO2浓缩机制的创建及其对光合效率的影响研究”

      4.国家-广东联合基金“水稻抗光氧化胁迫基因的挖掘及分子机理研究”

      5.国家基金“OsNOA1调控叶绿素和Rubisco形成及其温度依赖性的机理研究”

      6.省基金重点项目“多基因转化改造光呼吸代谢途径提高水稻耐热抗旱性研究”

      7.国家基金“水稻草酸合成与调控的分子机理”

      8.国家基金“GLO调控水稻光合作用的机理”


发表的主要研究论文

       1Shen BR, Wang LM, Lin XL, Yao Z, Xu HW, Zhu CH, Teng HY, Cui LL, Liu EE, Zhang JJ, He ZH, Peng XX* Engineering a new chloroplastic photorespiratory bypass to increase photosynthetic efficiency and productivity in rice. Molecular Plant, 201912:199-214. 

       2Liu J, Cui LL, Xie ZW, Zhang ZZ, Liu EE, Peng XX*. Two NCA1 isoforms interact with catalase in a mutually exclusive manner to redundantly regulate its activity in rice. BMC Plant Biology, 2019, 19:105.    

       (3Teng HY, Shen BR, Peng XX*. Responsiveness comparison of three stress inducible promoters in transgenic rice. Acta Physiol Plant, 2018, 40179. 

      4He H, Yang QS, Shen BR, Zhang S, Peng XX*. OsNOA1 functions in a threshold-dependent manner to regulate chloroplast proteins in rice at lower temperatures. BMC Plant Biology, 2018, 18:44.

       5Zhang ZS, Li XY, Cui LL, Meng S, Ye NH and Peng XX*. Catalytic and functional aspects of different isozymes of glycolate oxidase in rice. BMC Plant Biology, 2017, 17: 135.

       6Shen BR, Zhu CH, Yao Z, Cui LL, Zhang JJ, Yang CW, He ZH, Peng XX*. An optimized transit peptide for effective targeting of diverse foreign proteins into chloroplasts in rice. Scientific Report, 2017, 7: 46231.

       7Peng C, Liang X, Liu EE, Zhang JJ, Peng XX*. The oxalyl-CoA synthetase-regulated oxalate and its distinct effects on resistance to bacterial blight and aluminium toxicity in rice. Plant Biology, 2017, 19(3): 345-353.

       8Cui LL, Lu YS, Li Y, Yang CW and Peng XX*. Overexpression of Glycolate oxidase confers improved photosynthesis under high light and high temperature in rice. Front Plant Sci, 2016, 7: 1165.

       9Zhang ZS, Xu YY, Xie ZW, Li XY, He ZH, Peng XX*. Association-dissociation of glycolate oxidase with catalase in rice: a potential switch to modulate H2O2. Molecular Plant, 2016, 9: 737-748.

       10Zhang ZS, Mao XX, Ou JY, Ye NH, Zhang JH, Peng XX*. Distinct photorespiratory reactions are preferentially catalyzed by glutamate:glyoxylate and serine:glyoxylate aminotransferases in rice. J Photochem Photobiol B, 2015: 142: 110-117.

       11Ye NH, Yang GZ, Chen Y, Zhang C, Zhang JH, Peng XX*. Two hydroxypyruvate reductases encoded by OsHPR1 and OsHPR2 are involved in photorespiratory metabolism in rice. J Integr. Plant Biol, 2014, 52(2): 170-180. 

       (12Lu YS, Li Y, Yang QS, Zhang ZS, Chen Y, Zhang S and Peng XX*. Suppression of glycolate oxidase causes glyoxylate accumulation that inhibits photosynthesis through deactivating Rubisco in rice. Physiol Plant, 2014, 150 ( 3 )463-476.

       13Zhang ZS, Lu YS, Zhai LG, Deng RS, Jiang JJ, Li Y, He ZH, Peng XX*. Glycolate oxidase isozymes are coordinately controlled by GLO1 and GLO4 in rice. PLoS ONE, 2012, 7(6): e39658.

       14Yang QS, He H, Li H, Tian H, Zhang JJ, Zhai LG, Chen J, Wu H, Yi GJ, He ZH, Peng XX* . NOA1 functions in a temperature-dependent manner to regulate chlorophyll biosynthesis and Rubisco formation in rice. PLoS ONE, 2011; 6(5): e20015.

       15Zhang JJ, Yin YY, Wang YQ, Peng XX*. Identification of rice Al-responsive genes by semi-quantitative polymerase chain reaction using sulfite reductase as a novel endogenous control. J Integr Plant Biol, 2010, 52: 505-514.

       16Yu L, Jiang J, Zhang C, Jiang LR, Ye NH, Lu YS, Yang GZ, Liu EE, Peng CL, He ZH , Peng XX*. 2010. Glyoxylate rather than ascorbate is an efficient precursor for oxalate biosynthesis in rice. J Exp Bot, 2010, 61: 1625-1634.

       17Xu HW, Zhang JJ, Zeng J, Jiang LR, Liu EE, Peng CL, He ZH, Peng XX*. Inducible antisense suppression of glycolate oxidase reveals its strong regulation over photosynthesis in rice. J Exp Bot, 2009, 60: 1799-1809.