|
|
研究兴趣及方向
以大豆和玉米为材料,运用遗传学、细胞生物学、分子生物学和生物信息学等手段,围绕植物生殖发育中的染色体生物学及基因组学核心问题,研究1. 染色体的跨代传递及重塑;2. 生殖发育中父母本基因组互作机制;3. 大豆胚胎早期发育的动态调控。研究结果将服务于染色体工程辅助育种及大豆种质资源创新。
教育经历
2007年9月-2011年6月 西北农林科技大学,农学学士
2011年9月-2018年6月 中国科学院遗传与发育生物学研究所,理学博士
工作经历
2018年7月-2019年4月 中国科学院遗传与发育生物学研究所,博士后
2019年5月-2022年11月 John Innes Center, 博士后
2023年2月-至今 华南农业大学生命科学学院,首聘教授
主持科研项目
玉米新着丝粒形成和功能分析(青年科学基金,2020年1月—2022年12月,31900390)
植物雄性发育对高温敏感的机制研究(EMBO fellowship, 2020年2月—2022年2月,CA844-F13-M)
代表论文
(#为第一作者,*为通讯作者)
1、Liu, Y.#, Su, H.#, Zhang, J.#, Shi, L., Liu, Y., Zhang, B., Bai, H., Liang, S., Gao, Z., Birchler, J.A., and Han, F*. (2020). Rapid birth or death of centromeres on fragmented chromosomes in maize. Plant Cell 32, 3113-3123.
2、Su, H.#, Liu, Y.#, Liu, C., Shi, Q., Huang, Y., and Han, F*. (2020). Centromere satellite repeats have undergone rapid changes in polyploid wheat subgenomes. Plant Cell 9, 2035-2051.
3、Liu, Y.#, Su, H.#, Zhang, J., Liu, Y., Feng, C., and Han, F*. (2020). Back-spliced RNA from retrotransposon binds to centromere and regulates centromeric chromatin loops in maize. PloS Biol 18, e3000582.
4、Liu, Y.#, Su, H.#, Pang, J., Gao, Z., Wang, X.J., Birchler, J.A., and Han, F*. (2015). Sequential de novo centromere formation and inactivation on a chromosomal fragment in maize. Proc. Natl. Acad. Sci. USA 112, E1263-1271.
5、Liu, Y. #, Su, H., Zhang, J., Liu, Y., Han, F., and Birchler, J.A*. (2015). Dynamic epigenetic states of maize centromeres. Front. Plant Sci. 6, 904.
6、Liu, Y.#, Su, H.#, Liu, Y.#, Zhang, J., Dong, Q., Birchler, J.A., and Han, F*. (2017). Cohesion and centromere activity are required for histone H3 phosphorylation in maize. Plant J. 92, 1121-1131.
7、Su, H.#, Liu, Y.#, Liu, Y.X., Lv, Z., Li, H., Xie, S., Gao, Z., Pang, J., Wang, X.J., Lai, J., Birchler, J.A., and Han, F*. (2016). Dynamic chromatin changes associated with de novo centromere formation in maize euchromatin. Plant J. 88, 854-866.
8、Su, H.#, Liu, Y., Wang, C., Liu, Y., Feng, C., Sun, Y., Yuan, J., Birchler, J.A., and Han, F*. (2021) Knl1 participates in spindle assembly checkpoint signaling in maize. Proc. Natl. Acad. Sci. USA 118, e2022357118.
9、Zhang, J.#, Feng, C., Su, H., Liu, Y., Liu, Y., and Han, F*. (2020). The cohesin complex subunit ZmSMC3 participates in meiosis centromere pairing in maize. Plant Cell 4, 1323-1336.
10、Feng, C.#, Yuan, J., Bai, H., Liu, Y., Su, H., Liu, Y., Shi, L., Gao, Z., Birchler, J.A., and Han, F*. (2020) The deposition of CENH3 in maize is stringently regulated. Plant J. 102, 6-17.
11、Feng, C.#, Su, H., Bai, H., Wang, R., Liu, Y., Guo, X., Liu, C., Zhang, J., Yuan, J., Birchler, J.A., and Han, F*. (2018). High efficiency genome editing using a dmc1 promoter-controlled CRISPR/Cas9 system in maize. Plant Biotechnol. J. 11, 1848-1857.
12、Su, H.#, Liu, Y., Dong, Q., Feng, C., Zhang, J., Liu, Y., Birchler, J.A., and Han, F*. (2017). Dynamic location changes of Bub1-phosphorylated-H2AThr133 with CENH3 nucleosome in maize centromeric regions. New Phytol. 214, 682-694.
13、Wang, J.#, Liu, Y., Su, H., Guo, X., and Han, F*. (2017). Centromere structure and function analysis in wheat-rye translocation lines. Plant J. 91, 199-207.
14、Yuan, J.#, Shi, Q., Guo, X., Liu, Y., Su, H., Guo, X., Lv, Z., and Han, F*. (2017). Site-specific transfer of chromosomal segments and genes in wheat engineered chromosomes. J. Genet. Genomics 44, 531-539.
15、Feng, C.#, Liu, Y., Su, H., Wang, H., Birchler, J., and Han, F*. (2015). Recent advances in plant centromere biology. Sci. China Life Sci. 58, 240-245.
16、Zhang, B.#, Lv, Z., Pang, J., Liu, Y., Guo, X., Fu, S., Li, J., Dong, Q., Wu, H.J., Gao, Z., Wang, X.J., and Han, F*. (2013). Formation of a functional maize centromere after loss of centromeric sequences and gain of ectopic sequences. Plant Cell 25, 1979-1989.